概要: 表示成一个偶函数与一个奇函数之和的形式.14. 在集合R上的映射: , .(1)试求映射 的解析式;(2)分别求函数f1(x)和f2(z)的单调区间;(3) 求函数f(x)的单调区间.参考答案:经典例题:解析:本题可采用三种解法.方法一:直接根据奇、偶函数的定义.由f(x)是奇函数得f(-a)=-f(a),f(-b)=-f(b),g(a)=f(a),g(b)=f(b),g(-a)=g(a),g(-b)=g(b).∴以上四个不等式分别可简化为①f(b)>0;②f(b)<0;③f(a)>0;④f(a)<0.又∵f(x)是奇函数又是增函数,且a>b>0,故f(a)>f(b)>f(0)=0,从而以上不等式中①、③成立.故选C.方法二:结合函数图象.由下图,分析得f(a)=g(a)=g(-a)=-f(-a),f(b)=g(b)=g(-b)=-f(-b). 从而根据所给结论,得到①与③是正确的.故选C.方法三:利用间接法,即构造满足题意的两个函数模型f(x)=x,g(x)=|
高中数学《函数的简单性质》同步练习题,标签:小学数学知识点,http://www.85jc.com
表示成一个偶函数与一个奇函数之和的形式.
14. 在集合R上的映射:
,
.
(1)试求映射
的解析式;
(2)分别求函数f1(x)和f2(z)的单调区间;
(3) 求函数f(x)的单调区间.
参考答案:
经典例题:
解析:本题可采用三种解法.
方法一:直接根据奇、偶函数的定义.
由f(x)是奇函数得f(-a)=-f(a),f(-b)=-f(b),g(a)=f(a),g(b)=f(b),g(-a)=g(a),g(-b)=g(b).
∴以上四个不等式分别可简化为①f(b)>0;②f(b)<0;③f(a)>0;④f(a)<0.
又∵f(x)是奇函数又是增函数,且a>b>0,故f(a)>f(b)>f(0)=0,从而以上不等式中①、③成立.故选C.
方法二:结合函数图象.
由下图,分析得f(a)=g(a)=g(-a)=-f(-a),f(b)=g(b)=g(-b)=-f(-b).
从而根据所给结论,得到①与③是正确的.故选C.
方法三:利用间接法,即构造满足题意的两个函数模型f(x)=x,g(x)=|x|,取特殊值a、b.如a=2,b=1.可验证正确的是①与③,故选C.
答案:C
当堂练习:
B ; 2. D ; 3. B ;4. D ;5. A ; 6.
;7.
;
8.
>
;9. x=-1; 10. (
);
11. 解: (1)函数
上一页 [1] [2] [3] [4] [5] [6] [7] [8] 下一页
最新更新