概要:(3)设O为坐标原点,求四边形OMPN面积的最小值.解:(1)∵f(2)=2+ =2+ ,∴a= .(2)设点P的坐标为(x0,y0),则有y0=x0+ ,x0>0,由点到直线的距离公式可知,|PM|= = ,|PN|=x0,∴有|PM|•|PN|=1,即|PM|•|PN|为定值,这个值为1.(3)由题意可设M(t,t),可知N(0,y0).∵PM与直线y=x垂直,∴kPM•1=-1,即 =-1.解得t= (x0+y0).又y0=x0+ ,∴t=x0+ .∴S△OPM= + ,S△OPN= x02+ .∴S四边形OMPN=S△OPM+S△OPN= (x02+ )+ ≥1+ .当且仅当x0=1时,等号成立.此时四边形OMPN的面积有最小值1+ .探究创新8.有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角
2017届高考数学总复习考点函数教案,标签:教学设计,http://www.85jc.com(3)设O为坐标原点,求四边形OMPN面积的最小值.
解:(1)∵f(2)=2+ =2+ ,∴a= .
(2)设点P的坐标为(x0,y0),则有y0=x0+ ,x0>0,由点到直线的距离公式可知,|PM|= = ,|PN|=x0,∴有|PM|•|PN|=1,即|PM|•|PN|为定值,这个值为1.
(3)由题意可设M(t,t),可知N(0,y0).
∵PM与直线y=x垂直,∴kPM•1=-1,即 =-1.解得t= (x0+y0).
又y0=x0+ ,∴t=x0+ .
∴S△OPM= + ,S△OPN= x02+ .
∴S四边形OMPN=S△OPM+S△OPN= (x02+ )+ ≥1+ .
当且仅当x0=1时,等号成立.
此时四边形OMPN的面积有最小值1+ .
探究创新
8.有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1;
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1.
解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x,
∴V1=(4-2x)2•x=4(x3-4x2+4x)(0
∴V1′=4(3x2-8x+4).
令V1′=0,得x1= ,x2=2(舍去).
而V1′=12(x- )(x-2),
又当x< 时,V1′>0;当
∴当x= 时,V1取最大值 .
(2)重新设计方案如下:
如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.
新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=3×2×1=6,显然V2>V1.
故第二种方案符合要求.
●思悟小结
1.函数知识可深可浅,复习时应掌握好分寸,如二次函数问题应高度重视,其他如分类讨论、探索性问题属热点内容,应适当加强.
2.数形结合思想贯穿于函数研究的各个领域的全部过程中,掌握了这一点,将会体会到函数问题既千姿百态,又有章可循.
●教师下载中心
教学点睛
数形结合和数形转化是解决本章问题的重要思想方法,应要求学生熟练掌握用函数的图象及方程的曲线去处理函数、方程、不等式等问题.
拓展题例
【例1】 设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有 >0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x- )
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q= ,求c的取值范围.
解:设-1≤x1
∴ >0.
∵x1-x2<0,∴f(x1)+f(-x2)<0.
∴f(x1)<-f(-x2).
又f(x)是奇函数,∴f(-x2)=-f(x2).
∴f(x1)
∴f(x)是增函数.
(1)∵a>b,∴f(a)>f(b).
(2)由f(x- )
∴- ≤x≤ .
∴不等式的解集为{x|- ≤x≤ }.
(3)由-1≤x-c≤1,得-1+c≤x≤1+c,
∴P={x|-1+c≤x≤1+c}.
由-1≤x-c2≤1,得-1+c2≤x≤1+c2,
∴Q={x|-1+c2≤x≤1+c2}.
∵P∩Q= ,
∴1+c<-1+c2或-1+c>1+c2,
解得c>2或c<-1.
【例2】已知函数f(x)的图象与函数h(x)=x+ +2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)•x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
(理)若g(x)=f(x)+ ,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.
解:(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上.
最新更新