概要: 【小编寄语】www.85jc.com数学网小编给大家整理了2013届高考数学考点不等式专项复习教案 ,希望能给大家带来帮助!6.5 不等式的解法(二)●知识梳理1.|x|>a x>a或x<-a(a>0);|x|0).2.形如|x-a|+|x-b|≥c的不等式的求解通常采用“零点分段讨论法”.3.含参不等式的求解,通常对参数分类讨论.4.绝对值不等式的性质:||a|-|b||≤|a±b|≤|a|+|b|.思考讨论1.在|x|>a x>a或x<-a(a>0)、|x|0)中的a>0改为a∈R还成立吗?2.绝对值不等式的性质中等号成立的条件是什么?●点击双基1.设a、b是满足ab<0的实数,那么A.|a+b|>|a-b|B.|a+b|<|a-b|C.|a-b|<||a|-|b||D.|a-b|<|a|+|b|解析:用赋值法.令a=1,b=-1,代入检验.答案:B2.不等式|2x2-1|
2017届高考数学考点不等式专项复习教案,标签:教学设计,http://www.85jc.com
【小编寄语】www.85jc.com数学网小编给大家整理了2013届高考数学考点不等式专项复习教案 ,希望能给大家带来帮助!
6.5 不等式的解法(二)
●知识梳理
1.|x|>a x>a或x<-a(a>0);
|x|0).
2.形如|x-a|+|x-b|≥c的不等式的求解通常采用“零点分段讨论法”.
3.含参不等式的求解,通常对参数分类讨论.
4.绝对值不等式的性质:
||a|-|b||≤|a±b|≤|a|+|b|.
思考讨论
1.在|x|>a x>a或x<-a(a>0)、|x|0)中的a>0改为a∈R还成立吗?
2.绝对值不等式的性质中等号成立的条件是什么?
●点击双基
1.设a、b是满足ab<0的实数,那么
A.|a+b|>|a-b|
B.|a+b|<|a-b|
C.|a-b|<||a|-|b||
D.|a-b|<|a|+|b|
解析:用赋值法.令a=1,b=-1,代入检验.
答案:B
2.不等式|2x2-1|≤1的解集为
A.{x|-1≤x≤1} B.{x|-2≤x≤2}
C.{x|0≤x≤2} D.{x|-2≤x≤0}
解析:由|2x2-1|≤1得-1≤2x2-1≤1.
∴0≤x2≤1,即-1≤x≤1.
答案:A
3.不等式|x+log3x|<|x|+|log3x|的解集为
A.(0,1) B.(1,+∞)
C.(0,+∞) D.(-∞,+∞)
解析:∵x>0,x与log3x异号,
∴log3x<0.∴0
答案:A
4.已知不等式a≤ 对x取一切负数恒成立,则a的取值范围是____________.
解析:要使a≤ 对x取一切负数恒成立,
令t=|x|>0,则a≤ .
而 ≥ =2 ,
∴a≤2 .
答案:a≤2
5.已知不等式|2x-t|+t-1<0的解集为(- , ),则t=____________.
解析:|2x-t|<1-t,t-1<2x-t<1-t,
2t-1<2x<1,t-
∴t=0.
答案:0
●典例剖析
【例1】 解不等式|2x+1|+|x-2|>4.
剖析:解带绝对值的不等式,需先去绝对值,多个绝对值的不等式必须利用零点分段法去绝对值求解.令2x+1=0,x-2=0,得两个零点x1=- ,x2=2.
解:当x≤- 时,原不等式可化为
-2x-1+2-x>4,
∴x<-1.
当-
2x+1+2-x>4,
∴x>1.又-
∴1
当x>2时,原不等式可化为
2x+1+x-2>4,∴x> .
又x>2,∴x>2.
综上,得原不等式的解集为{x|x<-1或1
深化拓展
若此题再多一个含绝对值式子.如:
|2x+1|+|x-2|+|x-1|>4,你又如何去解?
分析:令2x+1=0,x-2=0,x-1=0,
得x1=- ,x2=1,x3=2.
解:当x≤- 时,原不等式化为
-2x-1+2-x+1-x>4,∴x<- .
当-
2x+1+2-x+1-x>4,4>4(矛盾).
当1
2x+1+2-x+x-1>4,∴x>1.
又1
∴1
当x>2时,原不等式可化为
2x+1+x-2+x-1>4,∴x> .
又x>2,∴x>2.
综上所述,原不等式的解集为{x|x<- 或x>1}.
【例2】 解不等式|x2-9|≤x+3.
剖析:需先去绝对值,可按定义去绝对值,也可利用|x|≤a -a≤x≤a去绝对值.
解法一:原不等式 (1) 或(2)
不等式(1) x=-3或3≤x≤4;
不等式(2) 2≤x<3.
∴原不等式的解集是{x|2≤x≤4或x=-3}.
解法二:原不等式等价于
或x≥2 x=-3或2≤x≤4.
∴原不等式的解集是{x|2≤x≤4或x=-3}.
【例3】 (理)已知函数f(x)=x|x-a|(a∈R).
(1)判断f(x)的奇偶性;
(2)解关于x的不等式:f(x)≥2a2.
最新更新