当前位置:八五教程网教学知识数学学习数学教研数学教学设计2017届高考数学总复习考点双曲线教案» 正文
  1. 2017届高考数学总复习考点双曲线教案

  2. [05-11 16:09:40]   来源:http://www.85jc.com  数学教学设计   阅读:8130

概要: 【小编寄语】www.85jc.com数学网小编给大家整理了2013届高考数学总复习考点双曲线教案 ,希望能给大家带来帮助!高三数学理科复习40-双曲线【考纲要求】了解双曲线的定义,几何图形和标准方程,知道它的简单性质。【自学质疑】1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是3.经过两点 的双曲线的标准方程是 。4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为【例题精讲】1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。3.设双曲线 的半焦距为 ,直线 过 两点,

2017届高考数学总复习考点双曲线教案,标签:教学设计,http://www.85jc.com

 

  【小编寄语】www.85jc.com数学网小编给大家整理了2013届高考数学总复习考点双曲线教案 ,希望能给大家带来帮助!

  高三数学理科复习40-----双曲线

  【考纲要求】

  了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

  【自学质疑】

  1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,

  渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。

  2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

  3.经过两点 的双曲线的标准方程是 。

  4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。

  5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为

  【例题精讲】

  1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。

  2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。

  3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。

  【矫正巩固】

  1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。

  2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。

  3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是

  4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。

  【迁移应用】

  1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率

  2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。

  3. 双曲线 的焦距为

  4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则

  5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .

  6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为


Tag:数学教学设计教学设计数学学习 - 数学教研 - 数学教学设计

上一篇:2017年人教版《认识钟表》教学设计
留言板
取消 发布留言