概要: 【小编寄语】www.85jc.com数学网小编给大家整理了湘教版高一数学必修三教案,望能给大家带来帮助!1.点的位置表示:(1)先取一个点O作为基准点,称为原点.取定这个基准点之后,任何一个点P的位置就由O到P的向量 唯一表示. 称为点P的位置向量,它表示的是点P相对于点O的位置.(2)在平面上取定两个相互垂直的单位向量e1,e2作为基,则 可唯一地分解为 =xe1+ye2的形式,其中x,y是一对实数.(x,y)就是向量 的坐标,坐标唯一 地表示了向量 ,从而也唯一地表示了点P.2.向量的坐标:向量的坐标等于它的终点坐标减去起点坐标.3.基本公式:(1)前提条件:A(x1,y1),B(x2,y2)为平面直角坐标系中的两点,M(x,y)为线段AB的中点.(2)公式:①两点之间的距离公式|AB|=(x2-x1)2+(y2-y1)2.②中点坐标公式 , .4.定比分点坐标设A,B是两个不同的点,如果点P在直线AB上且 =λ ,则称λ为点P分有向线段 所成的比.注意:当P在线段AB之间时, , 方向相同,
湘教版高一数学必修三教案,标签:教学设计,http://www.85jc.com
【小编寄语】www.85jc.com数学网小编给大家整理了湘教版高一数学必修三教案,望能给大家带来帮助!
1.点的位置表示:
(1)先取一个点O作为基准点,称为原点.取定这个基准点之后,任何一个点P的位置就由O到P的向量 唯一表示. 称为点P的位置向量,它表示的是点P相对于点O的位置.
(2)在平面上取定两个相互垂直的单位向量e1,e2作为基,则 可唯一地分解为 =xe1+ye2的形式,其中x,y是一对实数.(x,y)就是向量 的坐标,坐标唯一 地表示了向量 ,从而也唯一地表示了点P.
2.向量的坐标:
向量的坐标等于它的终点坐标减去起点坐标.
3.基本公式:
(1)前提条件:A(x1,y1),B(x2,y2)为平面直角坐标系中的两点,M(x,y)为线段AB的中点.
(2)公式:
①两点之间的距离公式|AB|=(x2-x1)2+(y2-y1)2.
②中点坐标公式 , .
4.定比分点坐标
设A,B是两个不同的点,如果点P在直线AB上且 =λ ,则称λ为点P分有向线段 所成的比.
注意:当P在线段AB之间时, , 方向相同,比值λ>0.我们也允许点P在线段AB之外,此时 , 方向相反,比值λ<0且λ≠-1.当点P与点A重合时λ=0.而点P与点B重合时 不可能写成 =0的实数倍.
定比分点坐标公式:已知两点A(x1,y1),B(x2,y2),点P(x,y)分 所成的比为λ.则x=x1+λx21+λ,y=y1+λy21+λ.
重心的坐标:三角形重心的坐标等于三个顶点相应坐标的算术平 均值,即x1+x2+x33,y1+y2+y33.
一、中点坐标公式的运用
【例1】已知 ABCD的两个顶点坐标分别为A(4,2),B(5,7),对角线的交点为E(-3,4),求另外两个顶点C,D的坐标.
平行四边形的对角线互相平分,交点为两个相对顶点的中点,利用中点公式求.
解:设C(x1,y1),D(x2,y2).
∵E为AC的中点,
∴-3=x1+42,4=y1+22.
解得x1=-10,y1=6.
又∵E为BD的中点,
∴-3=5+x22,4=7+y22.
解得x2=-11,y2=1.
∴C的坐标为(-10,6),D点的坐标为(-11,1).
若M(x,y)是A(a,b)与B(c,d)的中点,则x=a+c2,y=b+d2.也可理解为A关于M的对称点为B,若求B,则可用变形公式c=2x-a,d=2y-b.
1-1已知矩形ABCD的两个顶点坐标是A(-1,3),B(-2,4),若它的对角线交点M在x轴上,求另外两个顶点C,D的坐标.
解:如图,设点M,C,D的坐标分别为(x0,0),(x1,y1),(x2,y2),依题意得
0=y1+32 y1=-3;
0=y2+42 y2=-4;
x0=x1-12 x1=2x0+1;
x0=x2-22 x2=2x0+2.
又∵|AB|2+|BC|2=|AC|2,
∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.
整理得x0=-5,∴x1=-9,x2=-8
∴点C,D的坐标分别为(-9,-3),(-8,-4).
二、距离公式的运用
【例2】已知△ABC三个顶点的坐标分别为A(4,1),B(-3,2),C(0,5),则△ABC的周长为( ).
A.42 B.82 C.122 D.162
利用两点间的距离公式直接求解,然后求和.
解析:∵ A(4,1),B(-3,2),C(0,5),
∴|AB|=(-3-4)2+(2-1)2=50=52,
|BC|=[0-(-3)]2+(5-2)2=18=32,
| AC|=(0-4)2+(5-1)2=32=42.
∴△ABC的周长为|AB|+|BC|+|AC|
=52+32+42
=122.
答案:C
(1)熟练掌握两点 间的距离公式,并能灵活运 用.
(2)注意公式的结构特征.若y2=y1,|AB|=(x2-x1)2=|x2-x1|就是数轴上的两点间距离公式.
最新更新
推荐热门