概要:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.解:抛掷散子所得点数X 的分布列为ξ 1 2 3 4 5 6从而例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:甲单位不同职位月工资X1/元 1200 1400 1600 1800获得相应职位的概率P1 0.4 0.3 0.2 0.1乙单位不同职位月工资X2/元 1000 1400 1800 2000获得相应职位的概率P2 0.4 0.3 0.2 0.1根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1= 1400
新人教版高二数学教案,标签:教学设计,http://www.85jc.com⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;
⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;
⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛
三、讲解范例:
例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差.
解:抛掷散子所得点数X 的分布列为
ξ 1 2 3 4 5 6
从而
例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息:
甲单位不同职位月工资X1/元 1200 1400 1600 1800
获得相应职位的概率P1 0.4 0.3 0.2 0.1
乙单位不同职位月工资X2/元 1000 1400 1800 2000
获得相应职位的概率P2 0.4 0.3 0.2 0.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:根据月工资的分布列,利用计算器可算得
EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1
= 1400 ,
DX1 = (1200-1400) 2 ×0. 4 + (1400-1400 ) 2×0.3
+ (1600 -1400 )2×0.2+(1800-1400) 2×0. 1
= 40 000 ;
EX2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,
DX2 = (1000-1400)2×0. 4+(1 400-1400)×0.3 + (1800-1400)2×0.2 + (2200-1400 )2×0.l
= 160000 .
因为EX1 =EX2, DX 1
例3.设随机变量ξ的分布列为
ξ 1 2 … n
P
…
求Dξ
解:(略) ,
例4.已知离散型随机变量 的概率分布为
1 2 3 4 5 6 7
P
离散型随机变量 的概率分布为
3.7 3.8 3.9 4 4.1 4.2 4.3
P
求这两个随机变量期望、均方差与标准差
解: ;
;
;
=0.04, .
点评:本题中的 和 都以相等的概率取各个不同的值,但 的取值较为分散, 的取值较为集中. , , ,方差比较清楚地指出了 比 取值更集中.
=2, =0.02,可以看出这两个随机变量取值与其期望值的偏差
例5.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为 0.4,0.2,0.24 用击中环数的期望与方差比较两名射手的射击水平
解:
+(10-9) ;
同理有
由上可知, , 所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.
点评:本题中, 和 所有可能取的值是一致的,只是概率的分布情况不同. =9,这时就通过 =0.4和 =0.8来比较 和 的离散程度,即两名射手成绩的稳定情况
例6.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:
A机床 B机床
次品数ξ1 0 1 2 3 次品数ξ1 0 1 2 3
概率P 0.7 0.2 0.06 0 .04 概率P 0.8 0.06 0.04 0.10
问哪一台机床加工质量较好
解: Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,
Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.
它们的期望相同,再比较它们的方差
Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2
×0.06+(3-0.44)2×0.04=0.6064,
Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2
×0.04+(3-0.44)2×0.10=0.9264.
∴Dξ1< Dξ2 故A机床加工较稳定、质量较好.
四、课堂练习:
1 .已知 ,则 的值分别是( )
A. ; B. ; C. ; D.
答案:1.D
2 . 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.
最新更新