当前位置:八五教程网教学知识数学学习数学教研数学教学设计高三数学《圆锥曲线》复习教案» 正文
  1. 高三数学《圆锥曲线》复习教案

  2. [10-10 23:13:42]   来源:http://www.85jc.com  数学教学设计   阅读:8252

概要: 【小编寄语】www.85jc.com数学网小编给大家整理了高三数学《圆锥曲线》复习教案,希望能给大家带来帮助!90题突破高中数学圆锥曲线1.如图,已知直线L: 的右焦点F,且交椭圆C于A、B两点,点A、B在直线 上的射影依次为点D、E。(1)若抛物线 的焦点为椭圆C的上顶点,求椭圆C的方程;(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。(文)若 为x轴上一点,求证:2.如图所示,已知圆 定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足 ,点N的轨迹为曲线E。(1)求曲线E的方程;(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足 的取值范围。3.设椭圆C: 的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且⑴求椭圆C的离心率;⑵若过A、Q、F三点的圆恰好与直线l: 相切,求椭圆C的方程.4.设椭圆 的离心率为e=(1)椭圆的左、右焦

高三数学《圆锥曲线》复习教案,标签:教学设计,http://www.85jc.com

 

  【小编寄语】www.85jc.com数学网小编给大家整理了高三数学《圆锥曲线》复习教案,希望能给大家带来帮助!

  90题突破高中数学圆锥曲线

  1.如图,已知直线L: 的右焦点F,且交椭圆C于A、B两点,点A、B在直线 上的射影依次为点D、E。

  (1)若抛物线 的焦点为椭圆C的上顶点,求椭圆C的方程;

  (2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。

  (文)若 为x轴上一点,求证:

  2.如图所示,已知圆 定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足 ,点N的轨迹为曲线E。

  (1)求曲线E的方程;

  (2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足 的取值范围。

  3.设椭圆C: 的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且

  ⑴求椭圆C的离心率;

  ⑵若过A、Q、F三点的圆恰好与直线

  l: 相切,求椭圆C的方程.

  4.设椭圆 的离心率为e=

  (1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.

  (2)求b为何值时,过圆x2+y2=t2上一点M(2, )处的切线交椭圆于Q1、Q2两点,而且OQ1⊥OQ2.

  5.已知曲线 上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.

  (1)求曲线 的方程;

  (2)设过(0,-2)的直线 与曲线 交于C、D两点,且 为坐标原点),求直线 的方程.

  6.已知椭圆 的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).

  (Ⅰ)当m+n>0时,求椭圆离心率的范围;

  (Ⅱ)直线AB与⊙P能否相切?证明你的结论.

  7.有如下结论:“圆 上一点 处的切线方程为 ”,类比也有结论:“椭圆 处的切线方程为 ”,过椭圆C: 的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.

  (1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积

  8.已知点P(4,4),圆C: 与椭圆E: 有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

  (Ⅰ)求m的值与椭圆E的方程;

  (Ⅱ)设Q为椭圆E上的一个动点,求 的取值范围.

  9.椭圆的对称中心在坐标原点,一个顶点为 ,右焦点 与点 的距离为 。

  (1)求椭圆的方程;

  (2)是否存在斜率 的直线 : ,使直线 与椭圆相交于不同的两点 满足 ,若存在,求直线 的倾斜角 ;若不存在,说明理由。

  10.椭圆方程为 的一个顶点为 ,离心率 。

  (1)求椭圆的方程;

  (2)直线 : 与椭圆相交于不同的两点 满足 ,求 。

  11.已知椭圆 的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作 ,其中圆心P的坐标为 .

  (1) 若椭圆的离心率 ,求 的方程;

  (2)若 的圆心在直线 上,求椭圆的方程.

  12.已知直线 与曲线 交于不同的两点 , 为坐标原点.

  (Ⅰ)若 ,求证:曲线 是一个圆;

  (Ⅱ)若 ,当 且 时,求曲线 的离心率 的取值范围.

  13.设椭圆 的左、右焦点分别为 、 ,A是椭圆C上的一点,且 ,坐标原点O到直线 的距离为 .

  (1)求椭圆C的方程;

  (2)设Q是椭圆C上的一点,过Q的直线l交x轴于点 ,较y轴于点M,若 ,求直线l的方程.

  14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点 的切线方程为 为常数).

  (I)求抛物线方程;

  (II)斜率为 的直线PA与抛物线的另一交点为A,斜率为 的直线PB与抛物线的另一交点为B(A、B两点不同),且满足 ,求证线段PM的中点在y轴上;

  (III)在(II)的条件下,当 时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

  15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且

  设点P的轨迹方程为c。

  (1)求点P的轨迹方程C;

  (2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q

[1] [2] [3] [4]  下一页


Tag:数学教学设计教学设计数学学习 - 数学教研 - 数学教学设计

上一篇:2016高三数学《等比数列》教案
留言板
取消 发布留言