概要:(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 的值.参考答案:一、选择题:BDDCA,CDBCB.二、填空题:11.2x-3; 12.11 13.am+bn14.3 15.43033/,137024/31” 16.300.三、解答题:17.(1)-6.5; (2) .18.(1)y=3.2; (2)x=-1.19. .20.(1)2x2+9y2-12xy; (2)31.21.280.22.(1)26枚;(2)因为第[1]个图案有5枚棋子,第[2]个图案有(5+3×1)枚棋子,第[3]个图案有(5+3×2)枚棋子,一次规律可得第[n]个图案有[5+3×(n-1)=3n+2]枚棋子;(3)3×2010+2=6032(枚).23. ; ;由题意列方程得: ,解得:t=0.4,所以小明从家骑自行车到学校的
2017年七年级数学模拟试题及答案,标签:试卷分析,http://www.85jc.com(1)当PA=2PB时,点Q运动到的
位置恰好是线段AB的三等分
点,求点Q的运动速度;
(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?
(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求 的值.
参考答案:
一、选择题:BDDCA,CDBCB.
二、填空题:
11.2x-3; 12.11 13.am+bn
14.3 15.43033/,137024/31” 16.300.
三、解答题:
17.(1)-6.5; (2) .
18.(1)y=3.2; (2)x=-1.
19. .
20.(1)2x2+9y2-12xy; (2)31.
21.280.
22.(1)26枚;
(2)因为第[1]个图案有5枚棋子,第[2]个图案有(5+3×1)枚棋子,第[3]个图案有(5+3×2)枚棋子,一次规律可得第[n]个图案有[5+3×(n-1)=3n+2]枚棋子;
(3)3×2010+2=6032(枚).
23. ; ;由题意列方程得: ,解得:t=0.4,
所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(km),
即:星期三中午小明从家骑自行车准时到达学校门口的速度为:
4.5÷0.4=11.25(km/h).
24.(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得:
PA=40,OP=60,故点P运动时间为60秒.
若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:
50÷60= (cm/s);
若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:
30÷60= (cm/s).
②当P在线段延长线上时,由PA=2PB及AB=60,可求得:
PA=120,OP=140,故点P运动时间为140秒.
若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:
50÷140= (cm/s);
若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:
30÷140= (cm/s).
(2)设运动时间为t秒,则:
①在P、Q相遇前有:90-(t+3t)=70,解得t=5秒;
②在P、Q相遇后:当点Q运动到O点是停止运动时,点Q最多运动了30秒,而点P继续40秒时,P、Q相距70cm,所以t=70秒,
∴经过5秒或70秒时,P、Q相距70cm .
(3)设OP=xcm,点P在线段AB上,20≦x≦80,OB-AP=80-(x-20)=100-x,EF=OF-OE=(OA+ )-OE=(20+30)- ,
∴ (OB-AP).
最新更新