概要:(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;阅读材料2:如何把一个矩形ABCD(如图6)分割——重拼为一个正方形呢?操作如下:①画辅助图:作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥OX,与半圆交于点I;②如图6,在CD上取点F,使AF=MI ,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.(2)请依据上述操作过程证明得到的四边形EBHG是正方形.五、解答题23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量
2017八年级数学下册暑假作业练习及答案,标签:小学数学知识点,http://www.85jc.com(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;
阅读材料2:
如何把一个矩形ABCD(如图6)分割——重拼为一个正方形呢?操作如下:
①画辅助图:作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M作MI⊥OX,与半圆交于点I;
②如图6,在CD上取点F,使AF=MI ,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.
(2)请依据上述操作过程证明得到的四边形EBHG是正方形.
五、解答题
23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.
(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;
(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)
六、解答题
24.已知二次函数y=ax2+bx+2,它的图像经过点(1,2).
(1)如果用含a的代数式表示b,那么b= ;
(2)如图所示,如果该图像与x轴的一个交点为(-1,0).
①求二次函数的解析式;
②在平面直角坐标系中,如果点P到x轴的距离与点P到y轴的距离相等,则称点P为等距点.求出这个二次函数图像上所有等距点的坐标.
(3)当a取a1,a2时,二次函数图像与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小,并说明理由.
七、解答题
25.已知抛物线y = x2 + bx ,且在x轴的正半轴上截得的线段长为4,对称轴为直线x = c.过点A的直线绕点A (c ,0 ) 旋转,交抛物线于点B ( x ,y ),交y轴负半轴于点C,过点C且平行于x轴的直线与直线x = c交于点D,设△AOB的面积为S1,△ABD的面积为S2.
(1) 求这条抛物线的顶点的坐标;
(2) 判断S1与S2的大小关系,并说明理由.
参考答案:
第Ⅰ卷 (机读卷 共32分)
一、选择题(共8道小题,每小题4分,共32分)
题号 1 2 3 4 5 6 7 8
答案 D C C B C A B A
第Ⅱ卷 (非机读卷 共88分)
二、填空题(共4道小题,每小题4分,共16分)
题号 9 10 11 12
答案 x=-1 2.1×104 6 19,n2+n-1
三、解答题(本题共30分,每小题5分)
13.解:原式= ……………………………………………………4分
= …………………………………………………………………………5分
14.解:方程的两边同乘 ,得
………………………………………………………………………………2分
解得: ………………………………………………………3分
检验:把 代入 ………………………………4分
∴原方程的解为: . …………………………………………5分
15.证明:(1) ,
∴ ,
.…………………………………………………………………………………1分
最新更新