概要:2.认识旋转对称图形,理解旋转对称图形的概念,重视对学生自行设计旋转对称图形的能力的培养,并能够按要求作出简单的平面图形旋转后的图形.【重点】:旋转变换的基本性质,并能根据性质作出简单的平面图形旋转后的图形。【难点】:旋转变换的基本性质的探索,作出简单的平面图形旋转后的图形。【关键】:认识理解旋转变换的基本性质,理解旋转对称图形,培养学生动手操作能力。程序 教师活动创设问题情景 1. 课件演示,旋转而动产生的奇妙画面。2. 你能自己举出日常生活中的一些事例吗?探究新知1 1.观察图形找出这些图形的共同特征:2.概念:旋转、旋转中心2 用一张半透明的薄纸,覆盖在画有任意△AOB的纸上,在薄纸上画出与△AOB重合的一个三角形。然后用一枚图钉在点O处固定,将薄纸绕着图钉(即点O)转动一个角度45 ,薄纸上的三角形就旋转到了新的位置,标上A′、O′、B′,我们可以认为△AOB旋转45 后到了上△A′O′B′。在这样的旋转过程中,你发现了什么?做一做后,讨论回答:图
2017年七年级下册数学教学计划,标签:教学随笔,http://www.85jc.com2.认识旋转对称图形,理解旋转对称图形的概念,重视对学生自行设计旋转对称图形的能力的培养,并能够按要求作出简单的平面图形旋转后的图形.
【重点】:旋转变换的基本性质,并能根据性质作出简单的平面图形旋转后的图形。
【难点】:旋转变换的基本性质的探索,作出简单的平面图形旋转后的图形。
【关键】:
认识理解旋转变换的基本性质,理解旋转对称图形,培养学生动手操作能力。
程序 教师活动
创设
问题
情景 1. 课件演示,旋转而动产生的奇妙画面。
2. 你能自己举出日常生活中的一些事例吗?
探
究
新
知
1 1.观察图形找出这些图形的共同特征:
2.概念:旋转、旋转中心
2 用一张半透明的薄纸,覆盖在画有任意△AOB的纸上,在薄纸上画出与△AOB重合的一个三角形。然后用一枚图钉在点O处固定,将薄纸绕着图钉(即点O)转动一个角度45 ,薄纸上的三角形就旋转到了新的位置,标上A′、O′、B′,我们可以认为△AOB旋转45 后到了上△A′O′B′。在这样的旋转过程中,你发现了什么?做一做后,讨论回答:
图中,可以看到点A旋转到点A′,OA旋转到OA′, ∠AOB旋转到∠A′OB′,这些都是互相对应的点、线段与角。那么点B的对应点是___________;线段OB的对应线段是线段______;
线段AB的对应线段是线段______;
∠A的对应角是___________;
∠B的对应角是___________;
旋转中心是点____________;
旋转的角度是____________。
探
究
新
知
3 如图,如果旋转中心在△ABC的外面点O处,转动60 ,将整个△ABC旋转到△A′B′C′的位置。那么这两个三角形的顶点、边与角是如何对应的呢?
4 1、 如图,△ABC是等边三角形D是BC上一点,
△ABD经过旋转后到ACE的位置。旋转中心是哪一点?旋转了多少度?如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?2、如图,点M是线段AB上一点,将线段AB绕着点M顺时针方向旋转90 ,旋转后的线段与原线段的位置有何关系?如果逆时针方向旋转90 呢?
小结
提高 说说“旋转”的概念,旋转的等量关系。
说说描述“旋转”的过程要注意哪几方面?
5.3图形变换的简单应用
[学习目标]
知识目标:轴对称变换、平移变换、和旋转变换的概念和性质及应用。
能力目标:运用图形变换设计、制作图案,图象的周长和面积计算,应用图形变换的知识解决一些实际生活问题。通过观察和实验,培养学生的抽象思维和空间想象能力逐步培养学生的各种数学思想。
情感目标:结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。能够自主探索,与同学进行交流合作,能够使用数学语言有条理地表达自己解决问题的过程。
[重点]轴对称变换、平移变换、和旋转变换在图案设计、图象的面积计算等方面的应用。
[难点]运用图形变换设计、制作图案,不仅需要熟练掌握各种图形变换的概念和性质,还需要有丰富的想象力和创造性,是本节教学的难点;能把一些实际生活问题通过学习图形变换的知识转化为数学问题,从尔解决实际生活问题,将是部分同学更高层次的应用和目标。
一、自主学习
1、 引入如图的图案,探究图案中的图形变换。
(1)由哪些基本图形组成?
(2)主体图形是什么?
(3)运用了哪些图形变换?
(4)是怎样变换的?
二、合作、探究、展示:
1、 观察图3和图4,分别说出它们由哪些基本图形组成,运用了哪些图形变换?
2、如图,在四边形ABCD中,AC⊥BD于点E,BE=DE.已知AC=10cm,BD=8cm,求阴影部分的面积.
3.用七巧板可以拼出许多独特且有意义的图形,如图是用七巧板拼出的航天飞机图案,请你用七巧板再设计一个图案,并写上一句贴切、诙谐的解说词.
三、巩固练习
1.如图是一个由4个等边三角形组成的图形,利用学过的图形变换,分析它的形成过程.
最新更新
推荐热门